MATH-5A TEST 1 v2 (CHAPTER 1.4-1.8, 2.1, 3.4i and ii)
Spring 24

- Detailed Instructions given in Canvas. Exact, simplified answers, good presentations with correct notation expected. Only methods learned in this class are allowed. All steps must be shown.
(1) Use the given graph to answer the following questions. (2 points each)

(a) $\lim _{x \rightarrow-\infty} f(x)=$ \qquad (e) $f(-1)=$ undefined
(b) $\lim _{x \rightarrow-2^{-}} f(x)=$ \qquad (f) $\lim _{x \rightarrow-1} f(x)=$
(c) $\lim _{x \rightarrow-2^{+}} f(x)=$ \qquad (g) Is $f(x)$ continuous at $x=-1$? NO
(d) $\lim _{x \rightarrow \infty} f(x)=$ \qquad (h) Estimate $f^{\prime}(4)$ \square |_-_
(2) (a) Give the formal definition for

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty
$$

(8 points) Given any $M>0$, there exists $\delta>0$ such that if $a-\delta<x<a, f(x)>m$
(b) Give the formal definition for $\lim _{x \rightarrow \infty} f(x)=L$

Given any $\varepsilon>0$ there exists $N>0$ such that If $x>N$ then $|f(x)-L|<E$
$\underset{(3)}{\operatorname{Explain}}$ A few words make it clear whether you understand
(a) The graph below depicts $f(x)=2 \sqrt{x}-1$ with $\varepsilon=0.3$ and $\delta=0.5, a=1.5$, (as described in the definition of limit). Does this value of δ satisfy the definition for the given ε ? \qquad
(b) According to the graph, would $\delta=0.2$ satisfy the defintion?(Explain)
-es

There are x values for which $|f(x)-L|$ is not $<\varepsilon$.
(c) Now suppose that for the same function but with $a=1, \varepsilon=0.2$. Find a value of δ that would satisfy the definition of limit. Show work.
(The graph is just shown for you to use if it helps)

maser: $\delta=$ \qquad (smaller of $\varepsilon_{1}, \delta_{2}$)
This is the largos'

* δ that would work. Any thing smaller works also

Find X values where condition $|f(x)-L|<\varepsilon$ is met.

$$
\begin{aligned}
f\left(x_{1}\right) & =0.8 \\
2 \sqrt{x_{1}}-1 & =0.8 \\
2 \sqrt{x_{1}} & =1.8 \\
\sqrt{x_{1}} & =.9 \\
x_{1} & =.9^{2}
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{2}\right) & =1.2 \\
2 \sqrt{x_{2}} & -1 \\
2 \sqrt{x_{2}} & =2.2 \\
\sqrt{x_{2}} & =1.1 \\
x_{2} & =1.12
\end{aligned}
$$

Distance ε_{1} to

$$
a=1
$$

$$
\begin{aligned}
\delta_{2} & =x_{2}-1 \\
& =1.1^{2}-1 \\
& =-21
\end{aligned}
$$

(4) Evaluate and simplify the following limits if they exist (if the limit is ∞ or $-\infty$ say so.). No proof or detailed steps necessary, but do show work and use proper notation. Making a table of values or plugin in one value is not an acceptable technique.(4 points each)
(a) $\lim _{x \rightarrow \frac{\pi}{3}} \frac{1}{\cos x-4}=$
$-2 / 7$
(b) $\lim _{x \rightarrow 1^{+}} \frac{-2+3 x}{x-1}=$

$" \frac{1}{0} "$ vertical asymptote $\xrightarrow[\rightarrow \infty]{>\infty}$
Positive or negative?

$$
\frac{t}{t} \rightarrow+\infty
$$

(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}+\frac{1}{|x|}\right)=$ \square

$$
\begin{aligned}
& x \rightarrow 0^{-} \Rightarrow x<0 \Rightarrow|x|=-x \\
& \begin{aligned}
\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}+\frac{1}{|x|}\right) & =\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}+\frac{1}{-x}\right) \\
& =\lim _{x \rightarrow 0^{-}}(0)=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } \lim _{x \rightarrow 5} \frac{2 x^{2}-9 x-5}{x-5}=11 \\
& =\lim _{x \rightarrow 5} \frac{(x-5)(2 x+1)}{x-5} \\
& =\lim _{x \rightarrow 5}(2 x+1) \\
& =11
\end{aligned}
$$

(f) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}-5}}=$
(detailed steps must be shown)
$=\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}\left(1-\frac{5}{x^{2}}\right)}}$
$=\lim _{x \rightarrow-\infty} \frac{3 x}{|x|\left(1-\frac{5}{x^{2}}\right)} \quad \begin{aligned} & \text { since } x \rightarrow \infty \\ & x<0 \\ & \text { so }|x|=-x\end{aligned}$
$=\lim _{x \rightarrow-\infty} \frac{3 x}{-x\left(1-\frac{5}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{-3}{1-5 / x^{2}}$
(5) Given If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\sqrt{11-x} \text { if } x \leq 2 \\ x^{2}-1 \text { if } x>2\end{array}\right.$ find

$$
\lim _{x \rightarrow 2^{-}} f(x)=3
$$

$$
\lim _{x \rightarrow 2^{+}} f(x)=3
$$

$$
\lim _{x \rightarrow 2} f(x)=
$$

Is $f(x)$ continuous at $\mathrm{x}=2$? YR
(6) For what values of x are the following functions continuous? Show work. (4 points each)
a) $f(x)=\frac{4 x}{\tan x+1}$

Conts.for all real values except:
$\operatorname{den} \sin \neq 0 \Rightarrow \tan x+1 \neq 0$ $\tan x<-1$
\qquad
AND
since tan x domain

$$
x \neq \frac{\pi}{2}+\pi k
$$

b)

$$
\begin{aligned}
f(x) & =\sqrt{x^{2}-x-12} \\
& =\sqrt{(x-4)(x-3)}
\end{aligned}
$$

Counts on domain radicand ≥ 0

$$
(x-4)(x+3) \geq 0
$$

Cont for

$$
(-\infty,-3] \cup[4, \infty)
$$

(7) The table shows the position of a cyclist.

t (seconds)	0	1	3	4	5	7
s (feet)	0	1.5	6.5	13.5	24.0	37.5

(Express answers using appropriate units.)
a) Find the average velocity over the time period [1,4].

$$
\begin{aligned}
& \text { Ave Velocity } \left.=\frac{5(4)-5(1)}{4-1}=\frac{13.5-1.5}{3}=4 \mathrm{fl} / \mathrm{sec} .4\right]
\end{aligned}
$$

b) Estimate the instantaneous velocity of the cyclist at $\mathrm{t}=1$ as accurately as possible.

$$
\underset{[0,1]}{\text { Ave. veloaty }}=\frac{5(1)-5(0)}{1-0}=\frac{1.5}{1}=1.5 \mathrm{ft} / \mathrm{kec}
$$

$\begin{gathered}\text { Ave velocity } \frac{s(3)-5(1)}{3-1} \\ {[1,3]}\end{gathered} \frac{6.5-1.5}{2}=2.5 \mathrm{ft} / \mathrm{sec}$ $[1,3]$

For better estimate, average those two
$\underset{\substack{\text { Instantaneous } \\ \text { Velocity at } t=1}}{ } \approx \frac{1.5+2.5}{2}=2 \mathrm{ft} / \mathrm{sec}$
(8) Given $f(x)=x^{2}-2$
a) Use an appropriate form of the definition (methods we have used in this class, no short cuts) of the derivative to compute $f^{\prime}(a)$.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x^{2}-2-\left(a^{2}-2\right)}{x-a}=\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a}=\lim _{x \rightarrow a}(x+a)=2 a
\end{aligned}
$$

ANS

$$
f^{\prime}(a)=\alpha a
$$

b) Use the results of part (a) to find the slope of the tangent line at $x=0,2$, and 3

c) Sketch a graph of $f(x)$ and sketch the tangent line at $x=2$. Based on your graph, Is your answer to part b reasonable? Explain below.

d) Find the equation of the tangent line at $x=2$. $\operatorname{point}(2, f(2))=(2,2)$

Tangent line at $x=2$

$$
m=f^{\prime}(2)=4
$$

$$
y-2=4(x-2) \text { or } y=4 x-6
$$

e) Using part (a), find a value for a such that $\quad f^{\prime}(a)=-1$. Is this answer reasonable according to your graph?

$$
\begin{aligned}
f(a)=-1 . & \text { is nus anwerreasonane } \\
f^{\prime}(a) & =-1 \\
2 a & =-1 \\
a & =-1 / 2
\end{aligned}
$$

